Assessment of Photovoltaic Surface Texturing on Transmittance Effects and Glint/Glare Impacts

(PowerEnergy2015-49481)

### Julius Yellowhair Clifford K. Ho

Sandia National Laboratories Concentrating Solar Technologies Albuquerque, NM 87185-1127 jeyello@sandia.gov





Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

ASME 2015 Power and Energy Conversion Conference San Diego, CA, June 28 – July 02, ISAND2015-5177C

Exceptional service in the national interest





## Outline

- Background
- Motivation for this work
- Approach
- Results and Discussion
- Conclusion & future work



## **Background – PV Module Construction**



www.solarquotes.com.au



## Background (2/2) – Reflections



### **Motivation**

I. Solar glint/glare from PV modules is caused by reflections off PV glass covers – minimize this.



www.pagerpower.com



www.freerepublic.com

2. Maximizing transmittance through cover glass to solar cells can increase energy production.



## Surface Roughness Measurements Process



### Surface Roughness Measurement Data





# **Reflectance Measurements**





#### **Reflected Solar Beam Spread Measurements**



Smooth (float) glass, Lightly textured glass, Deeply textured glass



# **Beam Spread Calculations**





#### **Results on Surface Roughness & Beam Spread**





## **Ocular Hazards Study**



Irradiance on the retina:

$$E_r = \left(\frac{\rho E_{DNI}}{\beta^2}\right) \left(\frac{d_p^2 \tau}{f^2}\right)$$

Irradiance threshold for after-image potential:

$$E_{r,flash} = \frac{3.59 \times 10^{-5}}{\omega^{1.77}}$$



### **Ocular Impacts From PV Surface Texturing**

$$E_r < E_{r,flash}$$
  
$$\beta(\rho) > \left(\frac{\rho E_{DNI} d_p^2 \tau}{f^2 3.59 \times 10^{-5}}\right)^{\frac{1}{0.23}}$$





## **Example of PV Cover Glass Design**





## **Conclusions & Future Work**

- Measured reflectance, surface roughness, and solar beam spread from several PV modules
- We attempted to correlate the beam spread to the surface roughness
- Developed a design method to minimize glint/glare from PV modules and maximize transmittance
- Results were incorporated in the SGHAT code

- Would like to study soiling effects on textured surfaces
- Build engineered surface texturing for PV and evaluate







## **Replication Accuracy & Verification**



|                                | Master Avg.     | Replica Avg.    | %     |
|--------------------------------|-----------------|-----------------|-------|
|                                | Measurement     | Measurement     | Error |
| AVG Surface                    | $1.95 \pm 0.19$ | $2.00 \pm 0.05$ | 77    |
| Roughness, S <sub>a</sub> (µm) | 1.05 ± 0.10     | $2.00 \pm 0.05$ | 1.1   |
| RMS Surface                    |                 |                 |       |
| Roughness, <u>S</u> g (µm      | $2.45\pm0.24$   | $2.61\pm0.13$   | 6.6   |
| RMS)                           |                 |                 |       |

#### **Slope Error Calculation From Glare Measurements**

The angular beam spread after reflection is defined as:

Note that  $\sigma$  can be one-sided or two-sided. In this analysis,  $\sigma_{\text{BeamSpread}} = \sigma_{\text{Sun}} + \sigma_{\text{Total}}$  SlopeError Note that  $\sigma$  can be one-sided or two-sided. In this analysis a two-sided  $\sigma$  is used, which gives the full beam spread.

- where the Sun subtended angle ( $\sigma_{Sun}$ ) is about 9 mrad
- The 'Total Slope Error' quantity is a combination of the panel surface slope error and specularity due to surface texturing; it's typically defined as:

$$\sigma_{\text{Total}_\text{SlopeError}} = \sqrt{4\sigma_{\text{SE}}^2 + \sigma_{\text{Sp}}^2}$$

- where  $\sigma_{SE}$  is from the surface slope errors, and  $\sigma_{SP}$  is the specularity from the surface texturing (i.e. surface roughness); the factor of 4 is because the surface slope errors are measured at the surface, whereas the specularity is measured at the reflected beam – <u>note that with a</u> single glare measurement, these two quantities are difficult to

