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1. Requirements	

• Use of this software requires the latest version of one of the following free web browsers: 
Mozilla Firefox or Google Chrome.   

• The Solar Glare Hazard Analysis Tool (SGHAT) can be accessed by registering at 
www.sandia.gov/glare.   

2. Introduction	

With growing numbers of solar energy installations throughout the United States, glare from 
photovoltaic (PV) arrays and concentrating solar systems has received increased attention as a 
real hazard for pilots, air-traffic control personnel, motorists, and others. Sandia has developed a 
web-based interactive tool that provides a quantified assessment of (1) when and where glare 
will occur throughout the year for a prescribed solar installation, (2) potential effects on the 
human eye at locations where glare occurs, and (3) the annual energy production from the PV 
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array so that alternative designs can be compared to maximize energy production while 
mitigating the impacts of glare.  

The Solar Glare Hazard Analysis Tool (SGHAT) employs an interactive Google map where the 
user can quickly locate a site, draw an outline of the proposed PV array(s), and specify observer 
locations or paths. Latitude, longitude, and elevation are automatically recorded through the 
Google interface (see Error! Reference source not found.), providing necessary information 
for sun position and vector calculations.  Additional information regarding the orientation and tilt 
of the PV panels, reflectance, environment, and ocular factors are entered by the user.   

If glare is found, the tool calculates the retinal irradiance and subtended angle (size/distance) of 
the glare source to predict potential ocular hazards ranging from temporary after-image to retinal 
burn. The results are presented in a simple, easy-to-interpret plot that specifies when glare will 
occur throughout the year, with color codes indicating the potential ocular hazard. The tool can 
also predict relative energy production while evaluating alternative designs, layouts, and 
locations to identify configurations that maximize energy production while mitigating the 
impacts of glare. 

3. Changes	from	Previous	Versions	

SGHAT 3.0 
• Continuous flight path receptor. System now predicts glare for observers along entire 

flight path, rather than at discrete 0.25-mile points. 
• Optimization tool. Users can request compilation of analyses for many site 

configurations based on provided PV tilt and orientation ranges. 
• Project-based organization. Easily group configurations together. 
• Result persistence. Improved persistence logic that now includes analysis results. 
• Updated layout. Improve Editor and separate results into details page based on usage 

and user feedback. 
 
SGHAT 2G: 

• Option to correlate slope error with PV surface material. The amount of scatter can 
be dynamically determined based on the selected panel material. 

 
SGHAT 2F: 

• Flight path pilot line-of-sight relative to glare. Recent research and flight simulator 
testing has concluded that glare that occurs beyond 50º azimuthally from the line of sight 
of the pilot will not pose a safety hazard to pilots. Points representing this type of glare, if 
originally in the “yellow” region (potential for temporary after-image), are now displayed 
in the glare hazard plots as transparent green.  Points that were originally in the “green” 
(low potential for temporary after-image) or “red” (potential for permanent eye damage) 
are not changed. 
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SGHAT 2E: 
• Flight path azimuthal visibility restriction. Optionally ignore glare along flight paths 

when the glare appears beyond the specified horizontal viewing angle of the pilot. 
• Editable glide slope for flight path. The glide slope angle is now configurable. 

 
SGHAT 2D: 

• Single-axis tracking angle limit. PV panels can have a maximum angle of rotation when 
tracking. 

 
SGHAT 2C: 

• Single- and dual-axis tracking. PV panels can be set to track the sun along one or two 
axes. The panels can also be offset from the tracking axis. 

 
SGHAT 2B: 

• Flight path OP visibility restriction. Optionally ignore glare along flight paths when the 
glare appears below a certain viewing angle from the pilot. 

 
SGHAT 2A: 

• Multiple PV arrays can now be created for a single analysis. Configuration parameters 
for each array can be specified separately. 

• Hazard Plots depicting the visual impact of glare can be generated for observation 
points. Controls can be found in the results section of observation points. 

• Reflectivity based on Material Type is now an option for PV arrays. The reflectivity of 
various materials has been characterized and added to the analysis computation. If 
selected, reflectivity will be computed based on the material and incident angle between 
the sun and the surface of the PV module. See Appendix E for further information. 

 
SGHAT version 2 includes several significant updates from Version 1. These changes are 
summarized below. Detailed explanations of each update can be found in later sections. 
 

• Flight Path Tool. Flight paths can now be drawn on the map using the flight path tool. A 
flight path consists of nine observation points: a threshold point, which should be located 
at the runway threshold, and eight observation points extending from the threshold at 
quarter-mile intervals. The threshold crossing height and flight path direction can be 
modified by the user. 

• Updated User Interface. The UI has been overhauled to provide for more streamlined 
usage. No more tabbing between results and map – each section is now shown side-by-
side and can be expanded or collapsed depending on the focus. 

• Analysis Persistence. Analysis parameters and components are saved automatically. 
Analyses can be closed and re-loaded without loss of information. 

• Manual Entry of Coordinates.  Manually adjust the latitude and longitude coordinates 
of the PV array vertices or observation points (except flight paths). 
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4. 	Assumptions	and	Limitations	

Below is a list of assumptions and limitations of the models and methods used in SGHAT: 

• The software currently only applies to flat reflective surfaces.  For curved surfaces (e.g., 
focused mirrors such as parabolic troughs or dishes used in concentrating solar power 
systems), methods and models derived by Ho et al. (2011) [1] can be used and are 
currently being evaluated for implementation into future versions SGHAT. 

• SGHAT does not rigorously represent the detailed geometry of a system; detailed 
features such as gaps between modules, variable height of the PV array, and support 
structures may impact actual glare results.  However, we have validated our models 
against several systems, including a PV array causing glare to the air-traffic control tower 
at Manchester-Boston Regional Airport and several sites in Albuquerque, and the tool 
accurately predicted the occurrence and intensity of glare at different times and days of 
the year. 

• SGHAT assumes that the PV array is aligned with a plane defined by the total heights of 
the coordinates outlined in the Google map.  For more accuracy, the user should perform 
runs using minimum and maximum values for the vertex heights to bound the height of 
the plane containing the solar array.  Doing so will expand the range of observed solar 
glare when compared to results using a single height value.   

• SGHAT does not consider obstacles (either man-made or natural) between the 
observation points and the prescribed solar installation that may obstruct observed glare, 
such as trees, hills, buildings, etc. 

• The variable direct normal irradiance (DNI) feature (if selected) scales the user-
prescribed peak DNI using a typical clear-day irradiance profile.  This profile has a lower 
DNI in the mornings and evenings and a maximum at solar noon.  The scaling uses a 
clear-day irradiance profile based on a normalized time relative to sunrise, solar noon, 
and sunset, which are prescribed by a sun-position algorithm [2] and the latitude and 
longitude obtained from Google maps.  The actual DNI on any given day can be affected 
by cloud cover, atmospheric attenuation, and other environmental factors. 

• The ocular hazard predicted by the tool depends on a number of environmental, optical, 
and human factors, which can be uncertain.  We provide input fields and typical ranges of 
values for these factors so that the user can vary these parameters to see if they have an 
impact on the results.  The speed of SGHAT allows expedited sensitivity and parametric 
analyses. 

• Single- and dual-axis tracking compute the panel normal vector based on the position of 
the sun once it is above the horizon. Dual-axis tracking does not place a limit on the angle 
of rotation, unless the sun is below the horizon. For single-axis tracking, a maximum 
angle of rotation can be applied to both the clockwise and counterclockwise directions. 
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5. Site	Configuration	Editor	

The Site Configuration Editor is the primary interface for working with PV installations. It 
includes panes for geographically and textually modifying reflective surfaces, receptor 
components and analysis settings. 
 
 

 
Figure 1. Site Configuration Editor page 

 

5.1 Editor	Toolbar	

 
Figure 2 - Editor toolbar 

5.1.1 Project	dropdown	

5.1.1.1 New…	
Navigate to New Project page to create a new project. 

5.1.1.2 Open…	
Navigate to Project List page to open another project. 

5.1.1.3 Project	Settings	
Navigate to Project Details page 
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5.1.2 Site	Configuration	dropdown	

5.1.2.1 Details	&	Results	
Navigate to Configuration Details page to view information and analysis results, if any. 

5.1.2.2 Save	
Persist the Site Configuration, results and components to server database. 

5.1.2.3 New…	
Navigate to New Site Configuration page to create a new Site in this project. 

5.1.2.4 Open…	
Navigate to Site Configuration List page to view other site configurations in this project. 

5.1.2.5 Clone…	
Open window to Save a copy of the current Site Configuration. 

5.1.2.6 Edit	Settings	
Open window to view or edit analysis settings for this site configuration.  

5.1.3 Tools	dropdown	

5.1.3.1 Glare	Animation…	
Toggle window for requesting animation of glare-spot on specified day. 

5.1.3.2 PV	Optimization…	
Toggle window for requesting Optimization of PV array with range of tilts and orientations. 

5.1.4 Site	configuration	name	input	
Modify the name of the current site configuration. Name should be unique for this project and 
fewer than 50 characters in length. 

5.1.5 Save	button	
Save the current site configuration and components on server. 

5.1.6 Undo	button	
Revert to most recent saved version of this site configuration. 

5.1.7 Glare	Analysis	button	
Submit this site configuration, including all settings, reflective surfaces and receptor 
components, for glare analysis. If this site config has no unsaved changes, the results will 
automatically be saved and viewable on its Site Configuration Details page. If unsaved changes 
are present, the results will be linked to a temporary version of the site config that can be 
accessed using the link in the Progress window. 
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5.2 Map	Interface	

 
Figure 3 - Editor map section 

5.2.1 Component	Toolbar	

5.2.1.1 Toggle	Select/Navigation	mode	
Toggle mode to navigate map or modify components on map using mouse. 

5.2.1.2 PV	Creation	Mode	
Toggle mode for creating PV arrays on map. To create an array, single-click on the map for each 
array vertex, then either double-click the final vertex location or single-click the initial vertex to 
close the polygon. 

5.2.1.3 Vertical	Surface	Mode	
Toggle mode for creating vertical surfaces (“VS”) on map. To create a VS, single-click each 
vertex to draw a polyline and then double-click the final vertex to stop drawing. Note that if the 
VS is not double-sided, the reflective side of each face is the left side when looking from the 
beginning point to the end-point of the face. i.e. a building with reflective glass walls would be 
drawn in clockwise fashion such that the left side of each face is “facing” outward.  

5.2.1.4 Flight	Path	Mode	
Toggle mode for creating flight path receptors on map. To draw a flight path, first click once on 
the runway threshold to establish the Threshold Crossing Point. Then click again in the outward 
direction of the flight path, away from the runway. The distance of this second point does not 
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matter. The system will automatically create an end-point in the direction of this second-click 
two miles from the threshold. 

5.2.1.5 Observation	Point	Receptor	Mode	
Toggle mode for creating discrete observation point receptors. To create an OP simply click once 
on the map. 

5.2.1.6 Map	Search	Input	
Pan the map to a specific location by entering the location information into the Search bar, 
followed by hitting Enter or clicking the Search button. 

5.2.2 Google	Map	
The embedded Google Map on which to draw/edit components. 

5.3 Component	Data	Section	

Display area for component data and details. 

 
Figure 4 - Editor component data sections (collapsed) 

5.3.1 PV	Array	Component	Section	
Scrollable section to view basic PV array parameters. Click the “advanced…” link to open the 
Advanced PV Parameter Form for more detailed information and inputs. 

 
Figure 5 - Basic PV section 

5.3.2 Advanced	PV	Parameter	Form	
Accessible by clicking “advanced…” link in any basic PV component section. The Advanced 
Form includes all PV parameter inputs as well as tabular display of vertices. Each field includes 
a set default value for convenience. See Appendix for detailed descriptions of each parameter. 
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Note that the vertex coordinates, including elevation, are independent of the orientation and tilt. 
The vertices establish the tilt of the PV-array plane and do not influence the tilt or orientation of 
the individual panels themselves. For example, panels mounted flush on a 30° pitched roof will 
have PV-array vertices with different elevations to accommodate the pitched roof and resulting 
tilted PV-array plane (e.g., two vertices at 15 feet and two vertices at 10 feet).  However, the 
panels should still be prescribed with a tilt of 30° (if they are flush mounted against the 30° 
pitched roof) and the appropriate orientation. A tilt of 0° indicates that the panels are parallel 
with the earth’s surface and facing upward, regardless of the prescribed vertex elevations. 

5.3.3 Vertical	Surface	Component	Section	
Scrollable section to view basic VS parameters. Click the “advanced…” link to open the 
Advanced VS Parameter Form or more detailed information and inputs. 

 
Figure 6 - Basic Vertical Surface data section 

5.3.4 Advanced	VS	Parameter	Form	
Accessible by clicking “advanced…” link in any basic VS component section. The Advanced 
Form includes all VS parameter inputs as well as tabular display of vertices. Each field includes 
a set default value for convenience. See Appendix for detailed descriptions of each parameter. 

5.3.5 Flight	Path	Receptor	Component	Section	
Scrollable section to view basic FP parameters. Click the “advanced…” link to open the 
Advanced FP Parameter Form for more detailed information and inputs. 
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Figure 7 - Basic flight path data section 

5.3.6 Advanced	FP	Parameter	Form	
Accessible by clicking “advanced…” link in any basic FP component section. The Advanced 
Form includes all parameter inputs as well as tabular display of beginning- and end-points 
defining flight path. In addition, the user can choose to limit the downward and azimuthal angles 
of view from the flight path observation points to simulate restricted viewing from the cockpit by 
checking “Consider pilot visibility from cockpit.”  If checked, the default maximum downward 
viewing angle is set to 30 degrees and the default azimuthal viewing angle is set to 180 degrees, 
both of which can be modified [3].  See Appendix C.  Note that a glide slope of 3 degrees 
conforms to the Federal Aviation Administration guidelines for analyzing flight paths (78 FR 
63276). 

5.3.7 Observation	Point	Receptor	Component	Section	
Scrollable section to view and edit OP parameters. 

 
Figure 8 - Basic OP data section 

 

5.4 Glare	Animation	Form	

Accessible by navigating to Tools > Glare animation. 
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To request a glare-spot animation, select a PV array, receptor component and day. The system 
will compute the locations of the glare-spot on that day (if any) and will then display the spot on 
the Google map and animate it on a minute-by-minute basis. The media buttons can be used to 
manually animate the glare-spot over time. 
 
Note that the Animation Analysis uses the Lookback method to calculate the glare spot position. 
This method is not deterministic and may yield slightly different results each time it is executed. 
Additionally, the glare-spot may not always appear on the outlined PV footprint. This is because 
the glare-spot represents the centroid of the beam of reflected light that is causing glare. In some 
situations, the centroid will not be located on the PV array, but the edge of the light beam will be 
on the PV array and reflect to cause glare. 
 

5.5 PV	Optimization	Form	

Accessible by navigating to Tools > PV Optimization. 
The PV Optimization form can be used to automatically analyze a variety of PV configurations 
wherein the tilt and orientation are varied per the specified ranges. After selecting range start, 
stop, and step values for the tilt and orientation, enter a name and select a PV and submit the 
form. An email will be dispatched once the optimization is complete. 
 

 
Figure 9 - Optimization Request form 

 
Note that optimizations are queued and analyzed on a first-come, first-serve basis. Optimizations 
can include many hundreds of individual analyses and can take several hours to complete, 
depending on the optimization complexity and the number of optimizations queued. 
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6. Site	Configuration	Details	&	Results	Page	

Glare analysis results are displayed on the Configuration Details page. This page displays the 
name, description, analysis parameters, and a static google map at the top, as well as options to 
print the page or open it in the Editor. We recommend using the browser “Print to PDF” option 
for downloading a copy of the configuration and results. 
 
Below the configuration detail section is a set of tabs for navigating between the component 
parameters and glare analysis results. Click the tab heading to change tabs.  

6.1 Component	Parameters	

This tab section displays a summary of all component parameters for completeness. 

6.2 PV	Array	Results	

This tab includes glare analysis results for each component, separated into one section per PV 
array. Results are summarized by the number of minutes of glare detected per its ocular impact 
hazard level (green, yellow or red). Each component also offers visual displays of results in the 
form of an ocular occurrence chart, glare hazard chart and glare distance chart (for flight paths). 

6.2.1 Glare	Hazard	Chart	
This chart displays the ocular impact as a function of glare subtended source angle and retinal 
irradiance. Each minute of glare is displayed on the chart as a small circle in its respective hazard 
zone. For convenience, a reference point is provided which illustrates the hazard from viewing 
the sun without filtering, i.e. staring at the sun. 

 
Figure 10. Glare hazard plot showing glare with potential to cause temporary after-image at several times 

during the course of a day. 
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6.2.2 Glare	Occurrence	Plot	
The Glare Occurrence Plot shows when glare can occur (as viewed from the prescribed 
observation point) throughout the year.  The color of the dots indicates the potential ocular 
hazard [1] as shown in Figure 11.  In the example shown in Figure 11, glare is predicted to be 
visible from the prescribed observation point during the morning from January to November for 
~30 – 40 minutes.  The color of the plotted points indicates the potential ocular hazard.  In Figure 
11, the yellow dots indicate that the glare in this particular example has the potential to cause a 
temporary after-image. 

 
Figure 11.  Glare occurrence plot showing when glare can occur (time and date) and the potential for ocular 
impact (represented by the color of the dots).  Times are shown in Standard Time (during Daylight Savings 

Time, add one hour). 

 
Note that for flight path observation points, yellow glare beyond 50º azimuthally from the line of 
sight of the pilot is reduced to transparent lime green glare. This downgrading is due to recent 
research which found that the ocular impact is reduced when glare is outside the line of sight.  
Points that were originally in the “green” (low potential for temporary after-image) or “red” 
(potential for permanent eye damage) are not changed. 

 

Figure 12.  Before (left) and after (right) the algorithm update which treats yellow glare 50º beyond the pilot 
line-of-sight as transparent lime green. 
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7. SGHAT	2.0	Case	Study	and	Example	

We include a sample analysis of the Manchester-Boston Regional Airport (MHT), which has 
experienced glare from PV panels that were installed on the roof of a parking garage near the air 
traffic control tower.  The blue highlighted area in Figure 13 is drawn by the user to denote the 
location of the PV array.  The red marker indicates the location of the observer in the air traffic 
control tower. 

 

 
Figure 13.  Screen image of glare analysis of the Manchester Boston Regional Airport.  PV array (blue 

outline) and observation point (red marker) are entered using drawing tools integrated with Google Maps. 

 

7.1 SGHAT	2.0	ATCT	analysis	

Figure 14 through Figure 16 show other input parameters entered by the user, including 
orientation and tilt of the PV array, elevations, rated power (for energy production calculations), 
optical and ocular parameters.  The latitude, longitude, and elevation coordinates of the user-
drawn PV array and observation points are automatically calculated in Google Maps and used to 
determine sun position and vector calculations for the glare and energy production analyses. 
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Figure 14.  PV array input parameters used in SGHAT for glare analysis at MHT. 

 

 
Figure 15. ATCT observation point input parameters. 
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Figure 16. Analysis configuration parameters for MHT analysis. 

 

Figure 17 and Figure 19 show the results of the glare analysis assuming different values for the 
optical slope error of the PV modules, which impacts the scatter and beam spread.  The dots in 
the plot represent occurrences of glare as viewed from the user-specified observation point 
relative to the specified PV array as a function of the time of day and day of the year.  The color 
of the dots indicates the potential ocular hazard, which is impacted by the direct normal 
irradiance, optical parameters (reflectance, slope error/scatter), and ocular parameters (pupil 
diameter, transmission coefficient, ocular focal length).  In Figure 17 and Figure 19, there is a 
potential for glare that can cause temporary after-image (a lingering image of the glare in the 
field of view) during the early morning for most months of the year  Assuming an optical slope 
error of 10 mrad, which yields a total beam spread of the reflected glare image of 0.13 rad (~7 
degrees), predicts that glare will be visible for more days throughout the year and for a slightly 
longer period each day when compared to the results using a slope error of 0 mrad, which has 
less scatter and beam spreading (0.0093 rad or ~0.5 degrees).   

At MHT, the general spatial and temporal pattern of glare is shown in Figure 20. 



  
 

18 | P a g e  
 

 
Figure 17.  Results section and plot showing when glare can occur (time and date) and the potential for ocular 
impact (represented by the color of the dots) in the ATCT assuming an elevation of 150 ft above ground level 

with an optical slope error of 10 mrad (total beam spread of 0.1293 rad). 
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Figure 18. Hazard plot denoting visual impact of glare predicted for June 5. Glare has the potential to cause 

temporary after-image. 

 
 

 
Figure 19. Glare occurrence plot for MHT ATCT with slope error of 0, yielding total beam spread of 9.3 

mrad (the subtended angle of the sun). 
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Figure 20.  Approximate predicted locations and movement of glare on PV array at various times of the year. 

 
 
Photos and videos of glare from the installed PV array at MHT were taken from the Air Traffic 
Control Tower in late April and early May.  Glare was observed during hours that were 
consistent with those predicted by the glare tool (see Figure 21 and Figure  22; note that the 
hours shown in the ocular hazard plot in Figure 17 and Figure 19 are Eastern Standard Time, but 
the times shown in the photos in Figure 21 and Figure  22 are Eastern Daylight Time).  Because 
of the glare, tarp was placed over the offending PV modules. 

Features such as gaps between modules, uncertainty in the relative height of the PV modules and 
observation points, obstructions/land features between the PV array and the observation point, 
uncertainty in the optical properties of the modules, and atmospheric attenuation may impact the 
actual perception and time of observed glare.   

 
 

~June 

~March, September 

~December 
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Figure 21.  Glare viewed from Air Traffic Control Tower at Manchester/Boston Regional Airport 
(8:15 AM EDT, 4/27/12). 

 

 
Figure  22.  Glare viewed from Air Traffic Control Tower at Manchester/Boston Regional Airport (~8:17 AM 

EDT, 5/10/12).  Note that tarp has been placed over some of the modules. 
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7.2 Energy	optimization	

The Solar Glare Hazard Analysis Tool can also be used to predict the relative energy production 
from alternative configurations (orientation, tilt, etc.) so that designs can be identified that not 
only mitigate glare but also maximize energy production.  Table 1 shows alternative 
configurations using the same footprint of the PV array shown in Figure 13 that are predicted to 
produce no glare.  The relative annual energy production is also shown for each configuration.  
In addition, the current PV configuration (200° azimuthal angle, 20.6° elevation angle) and a 
maximum energy production configuration (180° azimuthal angle, 43° elevation angle) are 
shown in Table 1.  The optimal configuration using the same footprint that is predicted to 
produce no glare to the ATCT while maximizing energy production employs an azimuthal angle 
of 120° and an elevation angle of 40°. 
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Table 1.  Alternative PV array configurations that are predicted to produce no glare to the ATCT (unless 
otherwise noted).  Azimuthal angle is measured clockwise from due north (0°); elevation angle is measured 

from 0° (facing up) to 90° (facing horizontal).  Note: these analyses assumed an ATCT cabin elevation of 51.2 
m.  We were informed later that the cabin elevation was lower (~45 m), so other configurations with no glare 

to the ATCT are possible (e.g., Az=110°, El=20.6°). 

Azimuthal	Angle	
(degrees)	

Elevation	Angle	
(degrees)	

Relative	Annual	
Energy	Production	

180	 43	 100.0%*	
200	 20.6	 93.9%**	
120	 40	 88.9%	
120	 50	 87.2%	
110	 30	 85.0%	
110	 40	 84.7%	
120	 60	 83.7%	
110	 50	 82.8%	
130	 70	 81.5%	
100	 30	 80.9%	
100	 20	 80.8%	
100	 40	 79.9%	
110	 60	 79.3%	
120	 70	 78.3%	
100	 50	 77.6%	
90	 20	 77.5%	
210	 80	 76.9%	
90	 30	 76.4%	
220	 80	 75.8%	
90	 40	 74.5%	
110	 70	 74.2%	
100	 60	 74.1%	
130	 80	 74.0%	
90	 50	 71.8%	
120	 80	 71.3%	
100	 70	 69.2%	
90	 60	 68.1%	
110	 80	 67.7%	
90	 70	 63.4%	
100	 80	 63.2%	
90	 80	 57.8%	

*Maximum energy production; produces glare to ATCT 
**Current configuration; produces glare to ATCT 

 
 
Based on a review of the glare analyses, an alternative configuration of the PV modules was 
recommended where the assemblies are rotated 90° counter-clockwise so that they are facing 
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toward the east-southeast (110° from due north).  The tilt of the modules remains the same 
(however, since the downward tilt of the roof is 1.2° from east to west, the actual tilt of the 
modules is 20.7° - 1.2° = 19.5°. 

Figure 23 shows a screen image of the SGHAT analysis with the PV array outlined in blue and 
the location of the ATCT indicated by the red marker.  

 
Figure 23.  Location of alternative PV array configuration (outlined in blue) rotated 90° counter-clockwise so 

that they are facing toward the east-southeast (110° from due north). 

 
 

7.3 Flight	path	analysis	

In addition to the ATCT, observation points along straight approaches to runways 35, 6, 17, 24 
were also evaluated assuming a glide slope of 3 degrees.  The distance legend on the Google map 
is used (along with a ruler) to specify observation points and desired distances from the 
touchdown point on the landing strip.  See Table 2 and Figure 24 – Figure 27 for locations and 
elevations of observation points along the approach to these runways. 

For this new configuration (PV assemblies rotated 90° counter-clockwise as shown in Figure 
23), no glare was predicted to be observed in the ATCT or at the observation points along the 
approaches to runways 35, 6, and 17.  It should be noted that the elevation of the ATCT 
observation point was varied between 40 – 51 m and no glare was predicted.  Based on drawings 
of the ATCT tower, the elevation of the ATCT cabin is ~45 m. 

The annual energy produced from this new configuration was predicted to be within ~1% of the 
existing configuration. The existing configuration consists of 2210 modules with a rated power 
capacity of ~530 kW (~240 W/module).  The new configuration has 247 additional modules for 
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a rated power capacity of ~589 kW.  Using these values, SGHAT predicts that the maximum 
annual energy production for the existing and new designs are 1.04 GWh and 1.16 GWh, 
respectively, assuming clear-sky conditions.  Actual annual energy production will be less due to 
variable (lower) DNI when the sky is cloudy. 

 
Table 2.  Observation points for approaches to runways 35, 6, 17, and 24 assuming a 3 degree glide slope. 

Observation 
Point 

Height above 
ground (ft) 

Threshold 52 
¼ mile 121 
½ mi. 190 
¾ mi. 259 
1 mi. 328 
1 ¼ mi. 397 
1 ½ mi. 467 
1 ¾ mi. 536 
2 mi. 605 

 
 
 

 
Figure 24.  Observation points approaching Runway 35 from the southeast. 
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Figure 25.  Observation points approaching Runway 6 from the southwest. 

 

 
Figure 26.  Observation points approaching Runway 17 from the northwest. 
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Figure 27.  Observation points approaching Runway 24 from the northeast. 
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10. 	Appendix	A	–	Site	Configuration	Parameters	

• Height Units: (Per Project) Select the units of distance for the height of solar panels and 
the height above ground of each observation point in feet or meters. 

• Subtended angle of the sun:  The average subtended angle of the sun as viewed from 
earth is ~9.3 mrad or 0.5°. 

• Peak DNI:  The maximum Direct Normal Irradiance (W/m2) at the given location at solar 
noon. This value may be scaled at each time step to account for the changing position of 
the sun and reduced DNI in the mornings and evenings if the “variable” option is selected 
in the next field. On a clear sunny day at solar noon, a typical peak DNI is ~1,000 W/m2. 

• DNI variability: “Variable” scales the peak DNI at each time step based on the changing 
position of the sun. “Fixed” uses the peak DNI value for every time step throughout the 
analysis, with no scaling. 

• Ocular transmission coefficient:  The ocular transmission coefficient accounts for 
radiation that is absorbed in the eye before reaching the retina.  A value of 0.5 is typical 
[1, 4]. 

• Pupil diameter:  Diameter of the pupil (m).  The size impacts the amount of light 
entering the eye and reaching the retina.  Typical values range from 0.002 m for daylight-
adjusted eyes to 0.008 m for nighttime vision [1, 4]. 

• Eye focal length:  Distance between the nodal point (where rays intersect in the eye) and 
the retina.  This value is used to determine the projected image size on the retina for a 
given subtended angle of the glare source.  Typical value is 0.017 m [1, 4]. 

• Time interval:  Specify the time step for the glare analysis. The sun position will be 
determined at each time step throughout the year.  A time step of 1 minute yields 
excellent resolution. 

 

11. 	Appendix	B	–	PV	Array	Parameters	

• Axis tracking:  Indicate the type of tracking used by the panels (if any). “None” for 
fixed-tilt panels, “single” for single-axis tracking and “dual” for dual-axis tracking. Note 
that tracking affects the positioning of the panels at every time step while the sun is up. 

o Orientation of array: (fixed-tilt panels) Specify the orientation of the array in 
degrees, measured clockwise from true north.  Modules facing east would have an 
orientation of 90°, and modules facing south would have an orientation of 180°. 
The “Calculate declination” link can be used to determine the orientation if an 
angle based on magnetic north is known. 

o Tilt of solar panels: (fixed-tilt panels) Specify the tilt (elevation angle) of the 
modules in degrees, where 0° is facing up and 90° is facing horizontally. 
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o Tilt of tracking axis: (single-axis tracking) Specify the elevation angle of the 
tracking axis in degrees, where 0° is facing up and 90° is facing horizontally. The 
panels rotate about the tracking axis. 

o Orientation of tracking axis: (single-axis tracking). Specify the orientation of the 
tracking axis in degrees, measured clockwise from true north.  Panels facing south 
at solar noon would have an orientation of 180°.  Panels facing east at solar noon 
would have an orientation of 90°.  Note:  if the tilt of the tracking axis is 0°, an 
orientation of the tracking axis of either 0° or 180° yields the same results. 

o Offset angle of module: (single-axis tracking). Specify, in degrees, the vertical 
offset angle between the tracking axis and the panel (if any).  See Figure 4.6 in 
http://www.powerfromthesun.net/Book/chapter04/chapter04.html#4.1.2%20Singl
e-Axis%20Tracking%20Apertures. 

o Limit the rotation angle: (single-axis tracking). If checked, a maximum angle of 
rotation will be used to constrain the tracking rotation in both clockwise and 
counterclockwise directions. 

§ Maximum tracking angle: (single-axis tracking). The maximum angle the 
panel will rotate in both the clockwise and counterclockwise directions 
from the zenith (upward) position. 

• Rated power:  Specify the rated power (kW) of the PV system.  This is used to calculate 
the maximum annual energy produced (kWh) from the system in the prescribed 
configuration (assuming clear sunny days).  This is useful for comparing alternative 
configurations to determine which one has the maximum energy production. 

• Module surface material: specify the type of material comprising the PV modules. The 
reflectivities of the material choices have been characterized to generate scaled values for 
each time step. 

• Correlate slope error to module surface type. If checked, the slope error value will be set 
per the following table, based on the selected material: 

Table 3. Slope error and beam spread vs. surface type 

PV Glass Cover Type 
Average 

RMS Slope 
Error (mrad) 

Average 
Beam 

Spread 
(mrad) 

Standard 
deviation of 
slope error 

Standard 
deviation of 
beam error 

Smooth Glass without 
Anti-Reflection Coating 6.55 87.9 4.43 53.3 

Smooth Glass with Anti-
Reflection Coating 8.43 110 2.58 30.9 

Light Textured Glass 
without Anti-Reflection 

Coating 
9.70 126 2.78 33.3 

Light Textured Glass with 
Anti-Reflection Coating 9.16 119 3.17 38.0 

Deeply Textured Glass 82.6 1000 N/A N/A 
 

o Slope error:  specifies the amount of scatter that occurs from the PV module.  
Mirror-like surfaces that produce specular reflections will have a slope error 



  
 

30 | P a g e  
 

closer to zero, while rough surfaces that produce more scattered (diffuse) 
reflections have higher slope errors.  Based on observed glare from different PV 
modules, an RMS slope error of ~10 mrad (which produces a total reflected beam 
spread of 0.13 rad or 7°) appears to be a reasonable value. Not used if correlate 
slope error to module surface type is checked. 

• Reflectivity varies with incidence angle: If checked, the reflectivity of the modules at 
each time step will be calculated as a function of module surface material and incidence 
angle between the panel normal and sun position (see Appendix E). 

o Reflectivity of PV module:  Specify the solar reflectance of the PV module.  
Although near-normal specular reflectance of PV glass (e.g., with antireflective 
coating) can be as low as ~1-2%, the reflectance can increase as the incidence 
angle of the sunlight increases (glancing angles).  Based on evaluation of several 
different PV modules, an average reflectance of 10% is entered as a default value. 
Only used if reflectivity does not vary with incidence angle. 

 
The following list comprises the array vertex parameters: 
 

• Latitude: geographic coordinate, in degrees, representing north-south position of the 
point. 0 at the equator and positive above it.  

• Longitude: geographic coordinate, in degrees, representing east-west position of the 
point. The value must be between -180 and 180, with 0 at the Prime Meridian and 
negative to the west of it. 

• Ground Elevation: the height above sea level of the ground at the position of the point. 
• Height above ground: The absolute height of the observation point above the ground 

elevation. 
• Total elevation: the sum of the ground elevation and height above ground. Changes to 

this value are automatically reflected in the “height above ground” input. Use this if, for 
example, the PV array sits on a roof and the height of a building is known. Enter the 
height in the “total elevation” field and the heights above ground for each array vertex 
will be automatically determined.  

12. 	Appendix	C	–	Flight	Path	Parameters	

• Direction: angle, in degrees, from threshold along which to specify observations. 0 is true 
north, 90 is due east of true north. Note that the direction value may deviate from the 
specified runway angle. 

• threshold crossing height: height above ground of aircraft as it crosses threshold point. 
• glide slope: angle, in degrees, of ascent/descent of aircraft along path. Defaults to 3°. 
• consider pilot visibility from cockpit:  If checked, glare below the “max downward 

viewing angle” is ignored. Defaults to unchecked. 
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o max downward viewing angle: The angle below the horizon indicating the field 
of view of the pilot in the cockpit from the flight path observation points. Glare 
occurring below this field of view is ignored. Only used if “consider pilot 
visibility from cockpit” is checked. Defaults to 30°. 

o Azimuthal viewing angle: The horizontal angle clockwise and counter-clockwise 
from the front of the aircraft parallel with the horizon. Glare occurring past this 
field of view is ignored. An azimuthal viewing angle of 180° means glare behind 
the aircraft can be seen (360° field of view). Default value is set to 180°. 

 
For flight path observation point parameters, see Appendix D. 

13. 	Appendix	D	–	Observation	Point	Parameters	

• Latitude: geographic coordinate, in degrees, representing north-south position of the 
point. 0 at the equator and positive above it.  

• Longitude: geographic coordinate, in degrees, representing east-west position of the 
point. The value must be between -180 and 180, with 0 at the Prime Meridian and 
negative to the west of it. 

• Ground Elevation: the height above sea level of the ground at the position of the point. 
• Height above ground: The absolute height of the observation point above the ground 

elevation. 

14. Appendix	E	–	Vertical	Surface	Parameters	

• Top height – Maximum height of VS surface. 
• Bottom height – lower height of VS surface. Note that VS faces are vertical. 
• Double-sided? – Whether glare analysis should reflect sunlight off both sides, or just one 

side. If unchecked, the default reflective side for each face is the left side when looking 
from the start-point to the end-point of each face (akin to the right-hand rule). 

For OB vertex parameters, see Appendix B. 
 

Appendix	F	–	Reflectance	vs.	Incidence	Angle	

The reflectance of the module surfaces is highly dependent on the incidence angle of the sunlight 
relative to the surface normal.  In general, the reflectance of glass is relatively low (< 5%) at 
small incidence angles but increases rapidly above 60°.  Higher reflectances increase the glare 
intensity, retinal irradiance, and potential for ocular impact.  Figure 28 displays measured 
reflectances vs. incidence angle for various PV module materials measured by Sandia National 
Laboratories. 
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Nomenclature for labeling:  “AR_glass-texturing_cell-type_backsheet-color_frame-color_power-rating” 

a. AR:  Anti-reflective coating was present 
b. Glass-texturing:  smooth (none), light, or deep 
c. Cell-type:  monocyrstalline or polycrystalline 
d. Backsheet-color:  white or black 
e. Frame-color: silver or black 
f. Power-rating:  power rating in Watts 

Figure 28. Measured reflectance vs. incidence angle for different PV surface materials.   

 
The data sets were grouped into similar categories (e.g., roughness, coating), and polynomial 
regressions were applied to these data sets to determine approximate reflectance values as a 
function of incidence angle for five PV glass cover types:  (1) smooth glass without anti-
reflection coating, (2) smooth glass with anti-reflection coating, (3) lightly textured glass without 
anti-reflection coating, (4) lightly textured glass with anti-reflection coating, and (5) deeply 
textured glass.   Profilometry tests revealed that the lightly textured glass had an average surface 
roughness of ~1 – 2 microns, and the deeply textured glass had an average surface roughness of 
~17 microns.   contains the curve fits for each material type. These functions are used by 
SGHAT when determining the reflectance of the PV array panels as a function of the incidence 
angle of the incoming sunlight at each time step. 
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Table 4. Piece-wise functions describing the reflectance curves of the different types of PV glass covers.  
Angle, q, is the incidence angle.  In the fit functions, ‘y’ is the reflectance and ‘x’ is the angle of incidence. 

PV	Glass	Cover	Type	 Fit	Function	Defined	over	0°	£	q	£	60°	
Fit	Function	Defined	over		
60°	<	q	<	90°	

Smooth	Glass	without	Anti-Reflection	
Coating	 y	=	1.1977E-5	x2	–	9.5728E-4	x	+	4.410E-2	 y	=	6.2952E-5	e0.1019x	

Smooth	Glass	with	Anti-Reflection	
Coating	 y	=	1.473E-5	x2	–	9.6416E-4	x	+	3.2395E-2	 y	=	4.7464E-5	e0.1051x	

Light	Textured	Glass	without	Anti-
Reflection	Coating	 y	=	1.5272E-5	x2	–	1.1304E-3	x	+	4.305E-2	 y	=	7.3804E-5	e0.0994x	

Light	Textured	Glass	with	Anti-
Reflection	Coating	 y	=	1.4188E-5	x2	–	1.0326E-3	x	+	3.9016E-2	 y	=	7.0179E-5	e0.0994x	

Deeply	Textured	Glass	 y	=	6.8750E-6	x2	–	6.5250E-4	x	+	2.10E-2	 y	=	4.1793E-5	e0.0834x	

 


