Presentation to FAA

February 16, 2011

Summary of Impact Analyses of Renewable Energy Technologies on Aviation and Airports

Clifford K. Ho

Concentrating Solar Technologies Department Sandia National Laboratories <u>ckho@sandia.gov</u>

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

- Introduction
- Glint and Glare Analysis
- Thermal Signature Analysis
- Summary

Introduction

- Multiple agencies are interested in evaluating potential safety impacts from emerging energy technologies
 - Air Force
 - Impact on training missions at Nevada Test and Training Range
 - FAA
 - California Energy Commission
 - Solar power plant Applications for Certification
 - National Academies Transportation Research Board
 - Synthesis Report on "Investigating Safety Impacts of Energy Technologies on Airports and Aviation"

Air Force White Papers

- Series of white papers covering renewable energy technologies (PV, CPV, CSP, etc.)
 - Potential impacts include the following:
 - Ground-based and airborne radar interference
 - Radio frequency interference
 - Glare impact on pilots and sensors
 - Infrared emissions ("thermal signature")
 - Overflight restrictions
 - Sonic overpressure

- Introduction
- Glint and Glare Analysis
- Thermal Signature Analysis
- Summary

Introduction

- Glint and glare may cause unwanted visual impacts
 - Glint is momentary flash of light; glare is more continuous source of excessive brightness
 - Visual impacts range from flash blindness to retinal burn
- Need quantified analysis of glint/glare to reduce uncertainties associated with visual impacts of CSP installations
 - Industry, military, government agencies (e.g., California Energy Commission, Transportation Research Board)

Examples of Glint/Glare

Solar One (10 MW_e power tower, Daggett, CA)

Central Receiver Test Facility (SNL, NM)

National Solar Thermal Test Facility (SNL, NM)

Kramer Junction (150 MW_e parabolic trough, Mojave Desert, CA)

Glare Types

(polished surfaces; e.g., mirrors)

Diffuse Reflection

(rough surfaces; e.g., receivers)

Specular Reflections

Point Focus and Line Focus Collectors

Dish

Heliostat

Parabolic Trough

Specular Glare

Potential for glint and glare from collectors

- Off-axis; misalignment; moving to or from stow/standby
- End-loss and spillage for troughs

Off-axis Dish

Off-axis Trough

End-Loss from Trough

Previous Work (Pertaining to CSP Glint and Glare)

- 1976-1984: Brumleve, T.D., SAND76-8022 and SAND83-8035
 - Performed analysis and tests of glare from heliostats and receivers using retinal burn metrics from Sliney and Freasier (1973)
 - Determined exclusion zones and developed beam control strategies
- 2009: Ho, C.K., C.M. Ghanbari, and R.B. Diver, SolarPACES 2009
 - Developed safety metrics for both retinal burn and temporary flash blindness using data from multiple literature sources

Previous Work (cont.) (Pertaining to CSP Glint and Glare)

- 2010: Ho, C.K., C.M. Ghanbari, and R.B. Diver, ASME Energy Sustainability Conference
 - Developed analytical equations to evaluate specular and diffuse glare using retinal burn and temporary flash blindness metrics; performed validation tests

• 2010: Ho, C.K. and S.S. Khalsa (this paper)

- Derived explicit equations to determine distances that cause retinal burn and temporary flash blindness for specular glare
- Introduced web-based tool

Glare Analysis

Retinal Irradiance

Need to calculate

- Power entering eye
 - Function of irradiance at the cornea (front of eye)
- Subtended angle of glint/glare source

Potential Impacts

Analysis Steps (from ASME ES2010 paper)

- Calculate retinal irradiance using equations in paper for specular or diffuse reflections
 - Collector optical properties, DNI, pupil diameter
- Calculate subtended angle using equations in paper
 - For diffuse reflections, source is given by size of receiver or reflecting source
 - For specular reflections, use equations
- Identify potential impact using plot of retinal irradiance vs. subtended source angle

Comparison to Safety Metrics

RMS slope error = 1 mrad

 $\rho = 0.94$

aperture = 12 m

focal length = 7 m

50 m viewing distance

⇒ Retinal irradiance = 5 W/cm²

 \Rightarrow Subtended source angle = 1.8 mrad

Distances for Retinal Burn and Temporary After-Image

D = aperture, f = focal length

Glare Web Tool

PHLUX Web Tool

Photographic Flux Tools for Solar Glare and Flux Mapping

Sandia National Laboratories:	: Solar Glare and Flux Mapping Tools - Mozilla Firefox		
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks	Tools Help		
🔇 🖸 🗸 🖒 🛅 sandia.go	v/ https://share.sandia.gov/glare/	🕆 🔹 Google 🔎	
🚯 Sandia National Labo	e.sandia.gov/dare/		
Sandia National Laboratories	bout Mission Areas Newsroom Careers Doing Business Education Contact Us	Employee Locator Index Site Map Search 🛛 🚱	
Solar Glare and	Solar Glare and Flux Mapping Tools		
Flux Mapping Tools Empirical Glare Analysis Analytical Glare Analysis	Measurement of reflected solar irradiance is receiving significant attention by industry, militar government agencies to assess potential impacts of glint and glare from growing numbers of solar installations around the world. In addition, characterization of the incident solar flux distribut central receivers for concentrating solar power applications is important to monitor and maintain performance.	y, and power ion on system	
Contacts:	This website provides tools to analytically and empirically quantify glare from reflected lig determine the potential impact (e.g., temporary flash blindness, retinal burn). In addition, to being developed that will evaluate the irradiance distribution on a central receiver. Empirical resu based on digital photographs uploaded by the user. Instructions are included in each of the links b	nt and ols are Ilts are elow.	
Clifford K. Ho <u>ckho@sandia.gov</u> (505) 844-2384 Siri Sahib S. Khalsa <u>sskhals@sandia.gov</u> (505) 844-1229	Empirical Glare Analysis Upload Glare Photos		
(555) 514 1225	Analytical Glare Analysis		
	Flux Mapping Analysis Upload Receiver Photos		
	©2010 Sandia Corporation Questions and Comments Privacy and Security 🔂 News release RSS feed		

20

Empirical Analysis

Images are uploaded with relevant information

Digital photographs are taken of the glare

😂 Empirical Analysis - Mozilla Firefox 📃 🔲	×
File Edit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp	
🔇 🖂 🗸 🔂 🛅 sandia.gov https://share.sandia.gov/glar分 🚽 🚷 Google	\mathbf{P}
The Empirical Analysis The International Analysis	-
Analysis Title: Dish_Glare	^
Reflection Raw Image: C:\Documents and Settil Browse	
Sun Raw Image: C:\Documents and Settil Browse	
Reflection Image Filter Factor: 512	
Sun Image Filter Factor: 1024	=
DNI (W/m^2): 854	
Number of Points for Irradiance Plots: 50	
Analyze	
	*
Done	
	aborato

Selection Tools

Recent Examples of Glare from CSP Facilities

Concentrated Glare from Troughs

Nevada Solar One

Drive-by video of Nevada Solar One Glare, Boulder City, NV (6/29/10, noon)

Kramer Junction

Air Force Flyovers (F-16 and C-12) of Kramer Junction Parabolic Trough Plant in 2010 (CA)

Helicopter Flyover of NSTTF

November 10, 2010

Glare Analysis

- Introduction
- Glint and Glare Analysis
- Thermal Signature Analysis
- Summary

Infrared Emissions

 Heated objects can emit infrared radiation that may interfere with infrared sensors

Spectral Emissive Power

Spectral blackbody emissive power as a function of wavelength and temperature (adapted from Incropera and DeWitt, 1985).

Example of Irradiance Received from Hot Photovoltaic Array

- Introduction
- Glint and Glare Analysis
- Thermal Signature Analysis
- Summary

Summary

- Glint and Glare can cause unwanted visual impacts
 - Analytical models and safety metrics have been developed to quantify glint and glare
 - Models have been validated with test data
 - Web tool has been developed
- Infrared emissions from heated objects can interfere with infrared sensors
 - Provide quantification of spectral irradiance for different technologies
 - Temperature and time dependent (e.g., cooling of tower receiver)

Summary

- Identification and quantification of potential impacts will help agencies to develop appropriate mitigations, measures, and/or requirements
 - California Energy Commission
 - Air Force
 - FAA
 - National Academies Transportation Research Board

